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Outline

❶ Overview of MLS H2O and CO measurement
capability.
➟ Measurement systematic error estimates.
➟ Validation.

❷ Convection and In Situ Freeze Drying in the TTL
➟ Present a 2-D model (Holton and Gettelman,

2001) incorporating the two column model
(Folkins and Martin,2005, Folkins et al.,2006)
for convection with microphysics.

➟ We will use zonal mean measurements of CO
and HDO to determine how convection and
transport work in the TTL.

❸ Conclusions.



MLS H2O Measurement
➢ MLS resolves and fits the targeted

molecule spectrum making it easier to
distinguish target molecule from back-
ground emissions.

➢ MLS makes measurements in day and
night and is much less impacted by thin
clouds and aerosols than IR-VIS-UV tech-
niques.

➢ MLS makes measurements every 1.5◦

along orbit track for ∼3500 profiles each
day.

➢ Vertical profile points are every 1.35 km.

➢ Resolution is 3 × 200 × 7 km (vertical ×
along track × across track).

➢ Two H2O validation papers (Read et al.
and Lambert et al.) are accepted for pub-
lication in the JGR Aura Validation Issue.

➢ Usually validation is a rather pedes-
trian exercise of comparing closely coin-
cident measurements between different
sensors and noting whether the differ-
ences are within expected uncertainties.

➢ As we will show for H2O validation was
more interesting.

➢ The MLS end-to-end estimate for accu-
racy (random and bias) is given below.

Estimated systematic errors for 100 hPa H2O

From Read et al. Aura MLS H2O and RHi validation 2007, (accepted for publication). Errors on tropospheric H2O are larger.

Systematic Magnitude H2O Error

Error Bias(Prec)

Radiometric 2% 2%(7%)

Antenna 1%(2%)

Fwd model 2%(4%)

H2O strength 0.3%

H2O width 4%

numerics 1%

Systematic Magnitude H2O Error

Error Bias(Prec)

Pointing 170m 7%(10%)

Temperature 2K 2%

Retrieval 3%(20%)

numerics

& a priori +50%

Total RSS 8%(23%)



VALIDATION SUMMARY
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➢ MLS shows agreement within its systematic error estimate with most sensors.

➢ A notable exception is the poor agreement with the WB57 hygrometers during CR-AVE
for pressures P≤100 hPa.



VALIDATION DISCUSSION
I presented a paper at the CR-AVE workshop dis-
cussing the implications of such a large difference
on the MLS measurement system.

➢ Not consistent with systematic error analysis.

➢ MLS measurements of other trace gases (e.g.
O3) show ∼10% agreement with other correlative
measurements (both in situ and remote). Most
remote measurements of H2O agree within 10%
of MLS in the stratosphere.

➢ Not caused by horizontal or vertical smoothing
by MLS.

➢ Forward model radiance calculations using the
CFH H2O measurement agrees well with MLS ra-
diance measurements but the wetter WB57 pro-
file shows poor agreement. In addition the qual-
ity of N2O which is retrieved alongside H2O is de-
graded. N2O test case retrievals
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☞ Can not identify any problem in the MLS measurement
. . . But the higher H2O would be a significant discovery!
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➢ JLH, a WB57 hygrometer that recently un-
derwent a major calibration effort is now
measuring low H2O concentrations consis-
tent with CFH and MLS.



CCT-TTL Model Description
Convective Cold Trap Tropical Tropopause Layer model based on Holton and Gettelman
(2001) paper with Two Column Model (TCM) from Folkins and Martin (2005). Vapor/Ice par-
titioning equations

Dqv

Dt
= −α(qv −qex)+K

∂2qv

∂z2 + eqi − c(qv −qs)−d (qv −qconv
v ) ,

Dqi

Dt
= −α(qi −qex)+K

∂2qi

∂z2 − eqi + c(qv −qs)−d (qi −qconv
i )

α is exchange rate to higher latitudes, K is diffusion, e is evaporation rate, c is condensation
rate and d is convective mass flux divergence.
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➢ Convective mass flux divergence pene-
trates the level of zero radiative heating
up to the tropopause.

Consider Three Scenarios

① Slow Ascent: d = 0, Constant upward ver-
tical velocity. Emulates Fueglistaler et al.
2005.

② Convection: qconv
v = qs and qconv

i = 0.

③ Sherwood and Dessler (SD01) Convec-
tion: qconv

v � qs and qconv
i = qs −qconv

v .

Diagnostics

➢ CO: Doesn’t condense and is an excel-
lent diagnostic of convection and large
scale upwelling. This has been noted
in several papers by Schoeberl et al.
(2006 and 2007), Randel et al. (2007) and
Folkins et al. (2006).

➢ HDO: Microphysics test. (see Dessler
and Sherwood, 2003, Gettelman and
Webster, 2004, and Dessler et al., 2007)



TTL H2O
12S--12N Aura MLS H2O Anomaly

S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S
316.2

215.4

146.8

100.0

 68.1

 46.4

 31.6

 21.5

                  

 -52.5   -31.5   -10.5    10.5    31.5    52.5  
% deviation from mean

2004 2005 2006 2007

Pr
es

su
re

 {h
Pa

)

213.6

 68.2

 11.3

  3.6

  3.6

  3.7

  4.0

  4.2

H
2O

 (p
pm

v)

➢ Left MLS v1.5 H2O.

➢ Vertical grid is 2.7 km.

➢ H2O annual cycle maximum at 100 hPa.

➢ V1.5 discontinued after 28 Feb 2007.
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12S--12N Aura MLS H2O Anomaly
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➢ Right MLS v2.2 H2O.

➢ Vertical grid is 1.35 km.

➢ H2O annual cycle maximum at 83 HPa.



Model H2O
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➢ H2O profiles near Costa Rica on 22
Jan. 2006 from the WB57, CFH, and
MLS v2.2 H2O compared to model.



TTL CO
12S--12N Aura MLS CO Anomaly
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annual oscillation
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Slow Ascent:
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annual oscillation in
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TTL HDO FROM ACE-FTS
R. Nassar et al., JGR, 112, doi:10.1029/2007JD008417 (2007).

ACE-FTS v2.2 HDO Update
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➢ Dashed colored lines have no ex-
tratropical influence.

➢ Rayleigh distillation lines from
surface (thin black lines) and bot-
tom of TTL (thick dashed black
lines).

➢ Slow ascent.

➢ Convection detrains only vapor
at qconv

v = qs(Rayleigh) all ice is re-
moved.

➢ SD01 convection mostly detrains
ice qconv

i ≈ qs(-550◦/◦◦). Convec-
tive retention of ice is consistent
with cloud resolving model stud-
ies (Smith et al. 2007 and Jensen
et al. 2007).

➢ Deuterium enriched ice supplied by the
SD01 convection model fits the data best
and is compatible with observed extratropi-
cal HDO.

➢ Seasonal cycle relative to data spread
shown at right is weak.

HDO data: courtesy of the Canadian Space Agency



Conclusions
✰ Unable to reconcile the large difference seen between MLS and WB57 H2O

measurements in the lower stratosphere.

➟ MLS agrees well with CFH and most other remote sensors.
➟ Preliminary result from JLH flown on WB57 during TC4 also shows good

agreement.
➟ MLS H2O measurements are consistent with current microphysical models.
➟ The moist H2O observed by WB57 (ex. JLH) if accurate imply a major

deficiency in low temperature microphysical models.

✰ CO is a good diagnostic of convective transport and upwelling into the TTL.

➟ Convection is necessary for transporting tropospheric air across the zero
radiative heating mixing barrier.

✰ Convection must detrain ice into the TTL.

➟ Convectively detrained ice provides enriched HDO needed to match the
observations.

➟ Prevents the SD01 convection mechanism from dehydrating the TTL.
➟ The SD01 mechanism matches the ACE-FTS HDO profile well.

✰ Future work

➟ Use MLS CO, O3, HNO3, and HCl to derive convective mass flux divergence
and upwelling.

➟ Hook-up the model physics with a trajectory analysis and a radiation
calculation.


